Mathe-Basics für Data Scientists
Produktbeschreibung
- Dieses Buch richtet sich an angehende und fortgeschrittene Data Scientists sowie Programmierer*innen, die sich die mathematischen Grundlagen der Data Science aneignen wollen
- Besonders gut nachvollziehbar durch minimale mathematische Fachterminologie, praxisnahe Beispiele und zahlreiche Abbildungen
- Mit Übungen und Lösungen, um das Gelernte zu vertiefen
- Für Studium und Beruf
Um als Data Scientist erfolgreich zu sein, müssen Sie über ein solides mathematisches Grundwissen verfügen. Dieses Buch bietet einen klaren, leicht verständlichen Überblick über die Mathematik, die Sie in der Data Science benötigen. Thomas Nield führt Sie Schritt für Schritt durch Bereiche wie Infinitesimal- und Wahrscheinlichkeitsrechnung, lineare Algebra, Statistik und Hypothesentests und zeigt Ihnen, wie diese beispielsweise in der linearen und logistischen Regression und in Neuronalen Netzen eingesetzt werden.
Praktische Codebeispiele in Python und der Einsatz von Bibliotheken wie SymPy, NumPy und scikit-learn helfen Ihnen nachzuvollziehen, wie die mathematischen Konzepte auf Ihre Arbeit anwendbar sind. Sie bekommen ein Grundverständnis dafür, wie die Algorithmen unter der Haube funktionieren, und können sie mit Anwendungen wie dem maschinellen Lernen verknüpfen. In einem Exkurs beschreibt Thomas Nield außerdem, wie Sie Ihre Kenntnisse und Fähigkeiten in der Datenanalyse weiter optimieren können, um auf dem Data-Science-Arbeistmarkt zu überzeugen.
Weitere beliebte Produkte
Bewertungen
Schreiben Sie als erster eine Rezension
Ihre Meinung interessiert uns – und hilft anderen Kunden bei der Auswahl.